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Abstract

This article presents an approach for increasing the maintenance technician’s reliability by
considering the human fault rate as utility function’s maximization problem in the technician’s
training process. Adequately trained technicians are capable to perform a maintenance and manage
the reliability of their assigned assets within the complex aircraft systems. In general, a degradation
of aircraft reliability, due to maintenance tecnician’s competency, typically leads to significant,
undesirable safety and economic consequences. In this article, an optimal control theory is applied on
the purpose of finding of a fault rate reduction series in the training process which leads to highest
technician’s reliability in the maintenance process of the complex aircraft systems.

Introduction

Aircrafts equipment and systems are becoming more complex, as well as
the associated cost is significantly increasing due to loss of operation in case of
failure. In aviation domain, four aspects are considered — reliability,
maintainability, availability and safety (RAMS). From theoretical background
point of view and practical observations, the reliability level is decreasing by
accumulating the time in the field. Therefore, it is very important to keep an
aircraft reliability above a critical (lower) level to not compromising the aviation
safety. Aviation safety is a domain which is being threated by many agents [1].
One should note that, on one hand, errors related to maintenance can be more
difficult to detect and, on other hand, they have the potential to affect the safe
operation of aircraft for some time period. Technical/maintenance failure emerged
as the leading cause of airline accidents and fatalities [2]. Improperly trained
maintenance technicians is one of the contributing factors to aircraft accidents [4].
Some authors describe about US National Transport Safety Board (NTSB) reports
related to deficient maintenance of 50% — 7 out of 14 airline accidents [2]. Another
analysis on the accidents in the period 1990-2006, done by EASA, shows the
major cause was maintenance [5]. International Air Transport Association (IATA)
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safety report stated on average about 10% were maintenance events which led to
aircraft accidents (2009-2013) [6]. For the same time period, maintenance
operations together with training systems were highlighted to be a latent cause for
27 out of 338 non-fatal accidents [6]. Another study shows that maintenance
factors (6%) take the third rank [7]. IATA (2003-2008) stated that incorrectly
performed maintenance was a primary cause for 30% (on average) of the registered
worldwide accidents with aircrafts [8]. Another study from Boeing shows that 20%
of the accidents contained maintenance or inspection action [3]. In United
Kingdom, Civil Aviation Authority (CAA) has reported that 10% of recorded
events are maintenance related. For 10 years period (1996-2006): 51.1% were
assigned to incorrect maintenance actions, 26.2% to ineffective maintenance
control and 20.7% to incomplete maintenance [9]. Some other studies focused on
fatality of maintenance related accidents. For the time period between 1999 and
2008, 26.7% of all fatal accidents were maintenance related [4].

Maintenance errors do not only cause safety issues but also have
significant economic impact and they are very costly to the industry. Maintenance
errors may cause, for example, aircraft unavailability, in-flight shut downs,
maintenance rework, maintenance equipment damage and injury to maintenance
personnel. Some estimations show a cost of USD 500 000 (per engine in-flight
shutdown) [1].

The growing demand for maintenance personnel will require highly
qualified technicians. For example, the need for Europe region will be
approximately 130 000 new technicians who should be available to maintain the
new aircrafts during the next 20 years [1].

One can conclude that the human’s reliability is a very important part of
aircraft/acrospace systems reliability and safety, for example, see [10-17].
However, many studies in that area do not consider utility function and dynamic
optimization in their modelling. The main goal of the proposed study is to find an
approach how to increase the technician’s reliability by considering the fault rate as
utility function’s maximization problem in the technician’s training process.

Theoretical Background

Suppose a maintenance technician’s full working capability restoration
after a dedicated technical training where the probability of fault-free operating for
a given time ¢ is defined by the following expression [19]:

' —}u(!,é)dL
—Jl(z,e)dz.e 0

n  R@r)=e’

By analogy to the reliability theory, the term under the first exponent is associated
with the technician’s reliability [19]:
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t

[A(z,€)dz =q(t,€)
In (2) the first term © is called an exhausted reliability for a time
Y(2.8) = (el
t under conditions € [19]. The second term 0 is called a restored
reliability which is obtained in the technician’s training process for a time T under
conditions &. The technician’s reliability can be then expressed in the following
simplified way [19]:

3)  R(t1)=e =R, (q,7)

After reviewing (3), one can make a conclusion that the technician’s
reliability Ry(9:7) is decreasing when the exhausted reliability q is higher,

and Ry(¢.7) is increasing when the restored reliability v is higher.
Let’s consider in our case study the following problem — the restored reliability

T

(%, 8) = [u(L,g)dl .. . o
term 0 where the technician’s fault rate v to be considered as utility

function which needs to be maximized on the purpose of obtaining as high as
possible technician’s reliability in the training process. An optimal control theory
(dynamic optimization) will be further applied to solve this problem.

Nowadays, the applied mathematical modeling (e.g. applied optimization) is
widely used in many research areas — for example, see [18, 20].

First, suppose an optimal control task defined over the following frame with

periods: 0, 1, 2, ...T [18]. The general consideration is that the state variable Y is

measured at the beginning of each period ! and the control variable “iis applied
during this period ! . Fig. 1 shows this problem statement:

Fig. 1. Discrete time optimal control problem

with some functions which are continuously differentiable:
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The modeling of the problem stated above can be done in the following
way [20]:

T
4) max{J:ZF(xt,ut,t)+S(xT,T)}
t=0
where: the above expression (4) is a subject to the following constraints:
Q) Ax, =x,,, —x, :f(x,,u,,t), t=0,L,..,7-1
X,— given

glu,,t)=b, t=0,1,...,T-1

However, in the real practice, due to some feasibility reasons, it is
impossible to have records in continuous time. Therefore, having a daily
information, the time series of fault rate control can be expressed as [20]:

(6) U = UgyUyy Uy sy Uy }

Next, supposing the total time period in our case study T=10 days (i.e. the
scheduled techncian’s training period is 10 days), the objective function in our
optimization problem can be expressed by [20]:

(7) V(anﬁ) = Lp C(ut)

=0
where: C(u,)— cash flow for #-th day;

L =1/(1+r)— discounting factor;

r — the interest rate.
From a financial theoretical background point of view, (7) can be

considered as net present value (NPV) and in many practical tasks can be modeled
with a power function [20]:

®)  V(xpu)=p puf

t=0
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To maximize the objective function (8), the qualified trainer/instructor can
decide to apply the time series of fault rate control in (6) with a constraint shown
on equation (9) [20]:

9 x

To proceed further with the task, a numerical solution to a problem related
to dynamic optimization requires two endpoint conditions. Suppose the
technician’s initial fault rate is 2.5 [1/day] and the trainer/instructor has planned to
deliver the training for time period of 10 days. Then in this case study are assumed:

the initial condition x,= 2.5 [1/day] and final one x, =x,, =0.

Results and discussion

The task described above is solved by using Microsoft Excel® software
where expressions (1) — (9) are introduced in a spreadsheet format. In Table 1 are
shown the inputs together with the equations listed in the theoretical chapter:

Table 1. Inputs for our case study

A B C D E F G H J K L M
1 Alpha 0.8 Solver Parameters @
2 r 0.08
3 Beta 0.926 —
4 Set Objective: $D518 B
5 | time(day) u(t) x(t) DCF(t) T @) Max Min value OF:
6 0 0.25 2.50 0.330
7 1 0.25 2.25 0.305 By Changing Variable Cells:
8 2 0.25 2.00 0.283 $B36:58515 -
9 3 0.25 1.75 0.262
Subject to the Constraints:
10 4 0.25 1.50 0.242
$B$6:$B515 >=0 & Add
11 5 0.25 1.25 0.225 0816 5= 0 A
12 6 0.25 1.00 [ 0.208 r—
13 7 0.25 0.75 0.192 —
14 8 0.25 0.50 0.178 Delete
15 9 0.25 0.25 0.165
16 10 0 Reset All
17 |
------- 1 Load/save
18 PV | 239 |
w7 Make Unconstrained Variables Non-Negative
20 select a Solving Method: GRG Nonlinear E| Options
21
= Solving Method
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
23 engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
24 non-smooth.
25
26
27 Help [ Solve ] | Close |

a0

As a starting point, the inputs in our study: & (see (8), note: 0<% <1) and
the interest rate r are assumed to be 0.8 and 8% respectively. The cell B3 in Table 1
is dedicated on computing the discounting factor in (7). The equation (9) is
implemented in column C which represents the time series of the technician’s fault
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rate. At the beginning of each day, the fault rate is equal to the fault rate of the
beginning of previous day minus the reduced fault rate in previous day (see (9)).

The initial fault rate is™® = 2.5 [1/day] which is shown in cell C6. Applying
“Solver” algorithm introduced by Microsoft Excel® which requires initial guess
values of the optimal time series of fault rate. And at 1st iteration, suppose that the
fault rate is controlled uniformly each day, for example, with 0.25 [1/day] (cells
B6:B15 in Table 1). In the column D in spreadsheet is shown the DCF(t) which

t a
stands for discounted cash flow gained during day t, i.e. Bu, . The cell D18 shows
the net present value denoted by (8).

The NPV given by (8) depends on the initial fault rate %0 and on the fault

rate control U , L.e. V(xo,t) =2.39 if ¥0=2.5 and uniform fault rate series of 0.25
[1/day]. One may conclude in that case the uniform fault rate series is not optimal
when the future cash flows are subject to discounting factor. Applying the

optimization algorithm in that case, the optimal fault rate series ¥ can be found
which maximizes the NPV in (8). The non-negative constraints on control and state
variable can be seen in the “Solver’s dialog box (see Table 1).

The results are now shown in Table 2. Then the optimal fault rate reduction
series is: 0.82 [1/day] in day t = 0; 0.56 [1/day] in day t = 1; 0.38 [1/day] in day t =
2; etc. In that case of the optimal fault rate series is applied, and then the global
objective function (cell D18) increases from 2.39 up to 2.60. It is interesting to
highlight that the optimal fault rate series is with a slope that is declining due to the
fact that the discounting factor accelerates the technician’s fault rate reduction.

Table 2. Optimal solution for fault rate reduction

A B C D E F G H J K

1 Alpha 0.8
Solver Results :
2 r 0.08
3 Beta 0.926 Solver found a solution. All Constraints and optimality
4 conditions are satisfied. Reports
5 | time(day) u(t) x(t) DCF(t) - o Answer
6 0 0.82 2.50 0.850 i Sensitivity
7 1 0.56 1.68 | 0.579 timits
. . . (O Restore Original Values

8 2 0.38 1.13 0.394
9 3 0.26 0.75 0.268
10 P 018 0.49 0182 [ Return to Solver Parameters Dialog [J Outline Reports
11 5 0.12 0.32 0.124
12 6 0.08 0.20 0.084 OK Cancel Save Scenario...
13 7 0.06 0.12 0.057
14 8 0.04 0.06 0.039 Solver found a solution. All Constraints and optimality conditions are
15 9 0.03 0.03 | 0.027 satisfied.
16 10 0 When the GRG engine is used, Solver has found at least a local optimal solution.
17 When Simplex LP is used, this means Solver has found a global optimal solution.
18 | pv | 260 |
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Let’s now perform some sensitivity analysis, i.e. to highlight the influence
of the interest rate over the optimal solution- going back to Table 1 to change the
interest rate (cell B2), and then again running “Solver” algorithm. Table 3 shows
the new optimal solution.

By choosing an increased interest rate- this accelerates faster fault rate
reduction: 0.96 [1/day] for day ¢ = 0; 0.59 [1/day] in day ¢ = [I; then smaller
reduction with respect to the modified interest rate (0.1). The new optimal fault rate
series is with higher slope since the future cash flows are discounted with higher
value. The NPV increases up to 2.52 with the new optimal series. In this case, the
higher discounting value is impacting the DCF value which is 2.52, even with
optimal values.

Table 3. Case with modified interest rate

A B C D E F G H ] K
! Alpha 0.8 Solver Results @
2 r 0.1
3 Beta 0.909 Solver found a solution. All Constraints and optimality
4 conditions are satisfied. Reports
5 time(day) | uft) x{t) DCF(t) e Answer
6 0 0.96 2.50 0.964 ® KKeep Solver Solution; Sensitivity

Limits

7 1 0.59 1.54 0.539 () Restore Criginal Values
8 2 0.37 0.95 0.372
9 3 0.23 0.58 0.231
10 4 0.14 0.35 0.143 [JReturn to Solver Parameters Dialog [] Outline Reports
11 5 0.09 0.21 0.089
12 6 0.05 0.12 0.055 OK Cancel Save Scenario...
13 7 0.03 0.07 0.034
14 8 0.02 0.03 0.021 Solver found a solution. All Constraints and optimality conditions are
15 9 0.01 001 | 0.013 satisfiad.
16 10 0 When the GRG engine is used, Solver has found at least a local optimal solution.
17 When Simplex LP is used, this means Solver has found a global optimal solution.
18

Hl

We need to highlight that significant factors impacting the optimal fault rate
control are the discounting factor which induces that the fault rate has to be
reduced faster. However, this effect is suppressed by the decreasing returns of the
daily cash flow.

Reviewing now Table 4 which is showing the optimal fault rate series for
the case when the input @ is modified: from 0.8 to 0.85 and the “Solver” algorithm
is started again- here the new optimal fault rate series is even steeper: 1 [1/day] for
day t = 0; 0.6 [1/day] for day t = 1; 0.36 [1/day] for day t = 2; etc. It should be
noted that approximately 80% from the (initial) fault rate is expected to be reduced
over the first 4 days of the technician’s training.
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Table 4. Case with modified “alpha’ parameter

E F G H

A B C D
1 Alpha 0.85
2 r 0.08
3 Beta 0.926
4
5 time(day) u(t) x(t) DCF(t)
[} 0 1.01 2.50 1.008
7 1 0.60 1.49 0.603
8 2 0.36 0.89 0.361
9 3 0.22 0.52 0.216
10 4 0.13 0.31 0.129
11 5 0.08 0.18 0.078
12 3] 0.05 0.10 0.046
13 7 0.03 0.05 0.028
14 8 0.02 0.03 0.017
15 9 0.01 0.01 0.010
16 10 0
17
1| Pv | 2.50

Solver Results

Solver found a solution. All Constraints and optimality
conditions are satisfied.

@ Keep Solver Solution|
) Restore Original Values

[J Return to Solver Parameters Dialog

0K Cancel

Reports
Answer
Sensitivity
Limits

[[] Outline Reports

Save Scenario...

Solver found a solution. All Constraints and optimality conditions are

satisfied.

When the GRG engine is used, Solver has found at least a local optimal solution.
When Simplex LP is used, this means Solver has found a global optimal solution.

Let’s consider a numerical example of a restored reliability computation-

see second term

1.8 = (I) u(LE)dl

of (3). Consider the results summarized in Tables 1

and 2: uniform series of fault rate reduction vs optimal fault rate reduction series-
the fault rate vs training day is plotted in Fig. 2:

Fault rate

3.00

Fault Rate Reduction: Optimal vs Uniform Series

6 8 10

Days

Fig. 2. Fault rate reduction vs training days

—a—1x(t)_optimal

—g—x(t)_uniform
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The restored reliability (exp(-vt), where: v-fault rate[1/day] at day #) of
uniform vs optimal fault rate series is plotted in Fig. 3. One can conclude that in
case of optimal fault rate reduction series the restored reliability has a steeper slope
(i.e. increasing faster) than the case with uniform fault rate reduction series:

Restored Reliability: Optimal vs Uniform Series

1.20

1.00

o
o
=]

Reliability
o
=1
(=]

—a— Restored Reliability (optimal}

—a— Restored Reliability {uniform)

o
i
(=]

Days

Fig. 3. Restored reliability vs training days

Conclusion

In this section, I would like to summarize some of the most important
outcomes obtained by the proposed research study which are:
Maximized technician’s utility function (8) requires an optimal fault rate control

series ¥ during the considered technician’s training period.

The increasing in the technician’s restored reliability shows steeper slope
for the case of optimal fault rate reduction series compared to uniform fault rate
reduction series (Fig. 3). For example, 63% of restored reliability in case of an
optimal fault rate reduction series is obtained at about t = 4 days while in case of an
uniform fault rate reduction series this value is obtained at about t = 8 days.

The influence of the interest rate over the optimal solution has been
analyzed via performing a sensitivity study. Faster fault rate reduction can be
accelerated by increasing the interest rate (Table 4): approximately 80% from the
(initial) fault rate is expected to be reduced during the first 4 days of the
technician’s training.

The proposed study suggests an overlapping between today’s very
important and modern subjects like financial modeling, applied optimization and
human reliability.
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MOJXO/ 3A MOBUIIABAHE HA HAJIEJKTHOCTTA HA UOBEKA
MMPY TPEHUPOBBYHMSI IPOLIEC HA TEXHULIUTE
EKCILUIOATUPAILI ABUALIMOHHA TEXHUKA

Anrea Tanes

Pe3rome

CTaTI/IHTa HpeI[CTaBﬂ Ioaxod 3a IMOBHUIIIAaBAHC Ha HAACKIHOCTTA HA TEX-
HUKa T10 eKCIUIOATalys Ha aBUAIIOHHA TEXHUKA, KaTO pasTriieaa HHTEH3WBHOCTTA
Ha I‘peIlIKI/ITe Ha 4YOBCKa KaTo HpO6JI€M Ha oIlITUMHU3alusa Ha (bYHK]_[I/Iﬂ Ha I10JIC3-
HOCT B Ipolleca Ha OOyueHHE Ha TEXHUKA. AJICKBATHO OOYUYCHHUTE TCXHHIIM Ca B
CBhCTOSTHHE N1a W3BBHPINBAT MOMIPHKKA M Jia YIpPaBIsABAT HAJEKIHOCTTA HA BH3-
JIOKEHUTE MM akTuBH. KaTo 1110, BJIOIIABAHETO HA HAJEKIHOCTTA HAa aBHAIIMOH-
HaTa TeXHHUKa TOPaJd HEKOMIIETEHTHOCTTa HA TEXHUKA 332 TEXHUYECKO OOCITyXK-
BaHe OOMKHOBEHO BOJM /IO 3HAYMTEIHH, HEXXEJaHW TOCIEIUIN CBhpP3aHu C 0e30-
MacHOCTTa W WMKOHOMHWYECKH 3aryOu. B Ta3su cratus € mpuiiokeHa OITHMallHa
TEOpHs 3a yIpaBlieHUE C IeJI HAMUpaHE Ha Cepus Ha peaylldpaHe Ha TPEIIKUTE B
mpolieca Ha o0ydYeHHe, KOSTO BOJHU 10 Hal-BHCOKA HAJSKIHOCT HA TEXHHUKA IPHU
eKCIUIoaTanys Ha CI0KHUTE aBHALlMOHHU CHCTEMH.
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